Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 631: 443-466, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31948563

RESUMO

Immunotherapies against cancer continue to improve, but many cancers show primary or secondary resistance. Novel research strategies are necessary to reach a comprehensive understanding of the underlying mechanisms. There is increasing evidence that T cells themselves provoke immune escape of cancer cells. In this chapter we describe a co-culture system to analyze the dynamic interplay between T cells and cancer cells. Using human melanoma cell lines and T cell clones, we obtained reproducible and comparable results despite the high heterogeneity of tumor cells. We show the feasibility of differential protein and gene expression analysis of melanoma cells isolated from our culture system. Thus, the system allows quantifying broadly the differential gene expression in melanoma cells upon interaction with T cells, revealing immune-related reactions in cancer cells. Many parts of this chapter were previously published in an original paper and are reproduced here for this book.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Regulação Neoplásica da Expressão Gênica , Imunoterapia , Melanoma/imunologia , Antígenos de Neoplasias/genética , Antígenos HLA/genética , Humanos , Técnicas Imunológicas , Melanoma/genética
2.
Sci Transl Med ; 10(436)2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643229

RESUMO

Colony-stimulating factor 1 (CSF1) is a key regulator of monocyte/macrophage differentiation that sustains the protumorigenic functions of tumor-associated macrophages (TAMs). We show that CSF1 is expressed in human melanoma, and patients with metastatic melanoma have increased CSF1 in blood compared to healthy subjects. In tumors, CSF1 expression correlated with the abundance of CD8+ T cells and CD163+ TAMs. Human melanoma cell lines consistently produced CSF1 after exposure to melanoma-specific CD8+ T cells or T cell-derived cytokines in vitro, reflecting a broadly conserved mechanism of CSF1 induction by activated CD8+ T cells. Mining of publicly available transcriptomic data sets suggested co-enrichment of CD8+ T cells with CSF1 or various TAM-specific markers in human melanoma, which was associated with nonresponsiveness to programmed cell death protein 1 (PD1) checkpoint blockade in a smaller patient cohort. Combination of anti-PD1 and anti-CSF1 receptor (CSF1R) antibodies induced the regression of BRAFV600E -driven, transplant mouse melanomas, a result that was dependent on the effective elimination of TAMs. Collectively, these data implicate CSF1 induction as a CD8+ T cell-dependent adaptive resistance mechanism and show that simultaneous CSF1R targeting may be beneficial in melanomas refractory to immune checkpoint blockade and, possibly, other T cell-based therapies.


Assuntos
Fator Estimulador de Colônias de Macrófagos/sangue , Melanoma/sangue , Melanoma/patologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Macrófagos/metabolismo , Camundongos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
3.
Cancer Res ; 77(7): 1623-1636, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28104684

RESUMO

Although mutations drive cancer, it is less clear to what extent genetic defects control immune mechanisms and confer resistance to T-cell-based immunotherapy. Here, we studied the reactions of malignant and benign melanocyte lines to cytotoxic CD8+ T cells (CTL) using flow cytometry and gene expression analyses. We found rapid and broad upregulation of immune-regulatory genes, essentially triggered by CTL-derived IFNγ and augmented by TNFα. These reactions were predominantly homogenous, independent of oncogenic driver mutations, and similar in benign and malignant cells. The reactions exhibited both pro- and antitumorigenic potential and primarily corresponded to mechanisms that were conserved, rather than acquired, by mutations. Similar results were obtained from direct ex vivo analysis of the tumor microenvironment. Thus, immune regulation in the tumor landscape may often be driven by conserved mechanisms, which may explain why T-cell-based immunotherapy can provide durable benefits with relatively infrequent escape. Cancer Res; 77(7); 1623-36. ©2017 AACR.


Assuntos
Melanoma/imunologia , Linfócitos T Citotóxicos/imunologia , Linhagem Celular Tumoral , GTP Fosfo-Hidrolases/genética , Heterogeneidade Genética , Humanos , Imunoterapia , Interferon gama/farmacologia , Ativação Linfocitária , Melanoma/terapia , Proteínas de Membrana/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Evasão Tumoral , Microambiente Tumoral , Fator de Necrose Tumoral alfa/farmacologia
4.
Front Immunol ; 7: 326, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27625650

RESUMO

While T cell-based immunotherapies are steadily improving, there are still many patients who progress, despite T cell-infiltrated tumors. Emerging evidence suggests that T cells themselves may provoke immune escape of cancer cells. Here, we describe a well-controlled co-culture system for studying the dynamic T cell - cancer cell interplay, using human melanoma as a model. We explain starting material, controls, and culture parameters to establish reproducible and comparable cultures with highly heterogeneous tumor cells. Low passage melanoma cell lines and melanoma-specific CD8+ T cell clones generated from patient blood were cultured together for up to 3 days. Living melanoma cells were isolated from the co-culture system by fluorescence-activated cell sorting. We demonstrate that the characterization of isolated melanoma cells is feasible using flow cytometry for protein expression analysis as well as an Agilent whole human genome microarray and the NanoString technology for differential gene expression analysis. In addition, we identify five genes (ALG12, GUSB, RPLP0, KRBA2, and ADAT2) that are stably expressed in melanoma cells independent of the presence of T cells or the T cell-derived cytokines IFNγ and TNFα. These genes are essential for correct normalization of gene expression data by NanoString. Further to the characterization of melanoma cells after exposure to CTLs, this experimental system might be suitable to answer a series of questions, including how the affinity of CTLs for their target antigen influences the melanoma cell response and whether CTL-induced gene expression changes in melanoma cells are reversible. Taken together, our human T cell - melanoma cell culture system is well suited to characterize immune-related mechanisms in cancer cells.

5.
Protein Eng Des Sel ; 29(10): 467-475, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27578890

RESUMO

Monoclonal antibody-based targeted tumor therapy has greatly improved treatment options for patients. Antibodies against oncogenic receptor tyrosine kinases (RTKs), especially the ErbB receptor family, are prominent examples. However, long-term efficacy of such antibodies is limited by resistance mechanisms. Tumor evasion by a priori or acquired activation of other kinases is often causative for this phenomenon. These findings led to an increasing number of combination approaches either within a protein family, e.g. the ErbB family or by targeting RTKs of different phylogenetic origin like HER1 and cMet or HER1 and IGF1R. Progress in antibody engineering technology enabled generation of clinical grade bispecific antibodies (BsAbs) to design drugs inherently addressing such resistance mechanisms. Limited data are available on multi-specific antibodies targeting three or more RTKs. In the present study, we have evaluated the cloning, eukaryotic expression and purification of tetraspecific, tetravalent Fc-containing antibodies targeting HER3, cMet, HER1 and IGF1R. The antibodies are based on the combination of single-chain Fab and Fv fragments in an IgG1 antibody format enhanced by the knob-into-hole technology. They are non-agonistic and inhibit tumor cell growth comparable to the combination of four parental antibodies. Importantly, TetraMabs show improved apoptosis induction and tumor growth inhibition over individual monospecific or BsAbs in cellular assays. In addition, a mimicry assay to reflect heterogeneous expression of antigens in a tumor mass was established. With this novel in vitro assay, we can demonstrate the superiority of a tetraspecific antibody to bispecific tumor antigen-binding antibodies in early pre-clinical development.


Assuntos
Terapia de Alvo Molecular/métodos , Receptores Proteína Tirosina Quinases/imunologia , Anticorpos de Cadeia Única/imunologia , Especificidade de Anticorpos , Apoptose/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Ativação Enzimática , Humanos , Engenharia de Proteínas , Receptores Proteína Tirosina Quinases/metabolismo , Anticorpos de Cadeia Única/genética
6.
Front Immunol ; 6: 310, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26167163

RESUMO

Inhibitory receptors (iRs) are frequently associated with "T cell exhaustion". However, the expression of iRs is also dependent on T cell differentiation and activation. Therapeutic blockade of various iRs, also referred to as "checkpoint blockade", is showing -unprecedented results in the treatment of cancer patients. Consequently, the clinical potential in this field is broad, calling for increased research efforts and rapid refinements in the understanding of iR function. In this review, we provide an overview on the significance of iR expression for the interpretation of T cell functionality. We summarize how iRs have been strongly associated with "T cell exhaustion" and illustrate the parallel evidence on the importance of T cell differentiation and activation for the expression of iRs. The differentiation subsets of CD8 T cells (naïve, effector, and memory cells) show broad and inherent differences in iR expression, while activation leads to strong upregulation of iRs. Therefore, changes in iR expression during an immune response are often concomitant with T cell differentiation and activation. Sustained expression of iRs in chronic infection and in the tumor microenvironment likely reflects a specialized T cell differentiation. In these situations of prolonged antigen exposure and chronic inflammation, T cells are "downtuned" in order to limit tissue damage. Furthermore, we review the novel "checkpoint blockade" treatments and the potential of iRs as biomarkers. Finally, we provide recommendations for the immune monitoring of patients to interpret iR expression data combined with parameters of activation and differentiation of T cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...